Generalization Bounds for Learning the Kernel Problem

نویسندگان

  • Yiming Ying
  • Colin Campbell
چکیده

In this paper we develop a novel probabilistic generalization bound for learning the kernel problem. First, we show that the generalization analysis of the regularized kernel learning system reduces to investigation of the suprema of the Rademacher chaos process of order two over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rademacher chaos complexity by well-established metric entropy integrals and pseudo-dimension of the set of candidate kernels. Our new methodology mainly depends on the principal theory of Uprocesses. Finally, we establish satisfactory excess generalization bounds and misclassification error rates for learning Gaussian kernels and general radial basis kernels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Loss Bounds For Multiple Kernel Learning

We propose two new generalization error bounds for multiple kernel learning (MKL). First, using the bound of Srebro and BenDavid (2006) as a starting point, we derive a new version which uses a simple counting argument for the choice of kernels in order to generate a tighter bound when 1-norm regularization (sparsity) is imposed in the kernel learning problem. The second bound is a Rademacher c...

متن کامل

Generalization Bounds for Learning the Kernel -

In this paper we develop a novel probabilistic generalization bound for learning the kernel problem. First, we show that the generalization analysis of the kernel learning algorithms reduces to investigation of the suprema of the Rademacher chaos process of order two over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rademacher ...

متن کامل

Generalization Guarantees for a Binary Classi cation Framework for Two-Stage Multiple Kernel Learning

We present generalization bounds for the TS-MKL framework for two stage multiple kernel learning. We also present bounds for sparse kernel learning formulations within the TS-MKL framework.

متن کامل

Bounds on the Generalization Performance of Kernel Machines Ensembles

We study the problem of learning using combinations of machines. In particular we present new theoretical bounds on the generalization performance of voting ensembles of kernel machines. Special cases considered are bagging and support vector machines. We present experimental results supporting the theoretical bounds, and describe characteristics of kernel machines ensembles suggested from the ...

متن کامل

Rademacher Chaos Complexities for Learning the Kernel Problem

We develop a novel generalization bound for learning the kernel problem. First, we show that the generalization analysis of the kernel learning problem reduces to investigation of the suprema of the Rademacher chaos process of order 2 over candidate kernels, which we refer to as Rademacher chaos complexity. Next, we show how to estimate the empirical Rademacher chaos complexity by well-establis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009